

Преобразователь кода типа ПК-004 модификации коммутатор нагрузок ПК-004 / КН.02

Руководство по эксплуатации C2.008.000-06.01 РЭ

СОДЕРЖАНИЕ

		Стр.
1 НАЗНАЧЕНИІ	E	4
2 ТЕХНИЧЕСКИ	ИЕ ХАРАКТЕРИСТИКИ	6
3 КОМПЛЕКТН	ОСТЬ	10
4 УСТРОЙСТВО) И ПРИНЦИП РАБОТЫ	10
5 УКАЗАНИЯ М	МЕР БЕЗОПАСНОСТИ	11
6 ПОДГОТОВКА	А К РАБОТЕ	12
7 ПОРЯДОК РА	БОТЫ	14
8 МАРКИРОВК	А И ПЛОМБИРОВАНИЕ	15
9 ТЕХНИЧЕСКО	DE ОБСЛУЖИВАНИЕ	16
10 ВОЗМОЖНЬ	ІЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ	17
11 ТРАНСПОРТ	ИРОВАНИЕ И ХРАНЕНИЕ	18
12 ГАРАНТИЙН	ІЫЕ ОБЯЗАТЕЛЬСТВА	18
13 УТИЛИЗАЦИ	RI	19
14 СВЕДЕНИЯ	О РЕКЛАМАЦИЯХ	19
ЛИСТ РЕГИСТР	АЦИИ ИЗМЕНЕНИЙ	36
Приложение А	Габаритный чертеж	
Приложение Б	Сборочный чертеж	
Приложение В	Схема подключения	
Приложение Г	Описание настройки коммутатора	
Приложение Д	Описание регистров ПК-004 / КН.02	
Приложение Е	Инструкции по сборке и монтажу кабельных вводов	

Настоящее руководство по эксплуатации предназначено для ознакомления с устройством преобразователя кода типа ПК-004 модификации коммутатор нагрузок ПК-004 / КН.02 (далее – коммутатор), правилами эксплуатации, транспортирования и хранения с целью поддержания его в рабочем состоянии в течение срока эксплуатации.

1 НАЗНАЧЕНИЕ

1.1 Коммутатор применяется в составе комплекса технических средств охранно-пожарной сигнализации и управления пожаротушением КТС-2000 (ТУ 4371-006-12221545-01) и предназначен для управления по интерфейсу RS-485 независимой коммутацией четырех групп внешних нагрузок.

В качестве внешних нагрузок могут применяться различные типы оповещателей – звуковые, световые и другие исполнительные устройства.

- 1.2 Коммутатор имеет не взрывозащищенное исполнение и может применяться только в невзрывоопасных зонах.
 - 1.3 Коммутатор выпускается в корпусе из поликарбоната.

1.4 Пример записи обозначения при заказе и в других документах:

"Коммутатор нагрузок ПК-004 / $\underline{\text{KH.02}} - \underline{105}$ / $\underline{206}$ / $\underline{301}$ / $\underline{402}$ / $\underline{507}$ / $\underline{603}$ / $\underline{704}$ 8

ТУ4233-002-12221545-01".

где на рис.1 показано расположение вводов, цифрами от 1 до 8 обозначено:

- 1 модификация и исполнение:
- 2-8 первая цифра номер кабельного ввода (от 1 до 7) буква и вторая цифра тип и диаметр кабеля, согласно таблице 1.

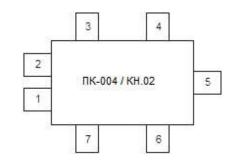


Рис. 1

Коммутатор нагрузок ПК-004 / КН.02

- кабельный ввод №1 тип кабеля без защиты, диаметр присоединяемого кабеля 11…17 мм;
- кабельный ввод №2 тип кабеля без защиты, диаметр присоединяемого кабеля 5…8,8 мм;
- кабельный ввод №3 тип кабеля без защиты, диаметр присоединяемого кабеля 6…12 мм;
- кабельный ввод №4 тип кабеля без защиты, диаметр присоединяемого кабеля 4…7 мм;
- кабельный ввод №5 тип кабеля без защиты, диаметр присоединяемого кабеля 7…12,5 мм;
- кабельный ввод №6 тип кабеля без защиты, диаметр присоединяемого кабеля 6…10 мм;
- кабельный ввод №7 тип кабеля без защиты, диаметр присоединяемого кабеля 10…16 мм.

Заглушки установлены в каждом кабельном вводе по умолчанию.

Таблица 1. ПК-004 / КН.02

Номер кабельного ввода. Рис. 1	Тип кабеля/ Диаметр присоединяемого кабеля О – без защиты	Габаритные размеры корпуса $($
3, 4, 6, 7	O1 – 612 мм. (металл) O2 – 47 мм. (пластик) O3 – 610 мм. (пластик) O4 – 1016 мм. (пластик)	160 × 160× 00 mg
1, 2, 5	O5 — 1117 мм. (металл) O6 — 58,8 мм. (пластик) O7 — 712,5 мм. (пластик) O8 — 1622 мм. (пластик)	160 × 160× 90 мм.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- 2.1 Коммутатор обеспечивает управление по интерфейсу RS-485 в протоколе ModBus RTU коммутацией четырех групп внешних нагрузок.
 - 2.2 Максимальный ток по всем группам нагрузок не более 15 А.
- 2.3 Максимальное сопротивление каждой из групп нагрузок для обеспечения контроля линии 3000 Ом.
- 2.4 Коммутатор обеспечивает независимую защиту каждой группы внешней нагрузки и отключение ее при возрастании тока до $(4,5\pm0,5)$ А с выдачей по интерфейсу RS-485 сигнала «Блокировка канала N», где N номер группы нагрузок.
- 2.5 Коммутатор обеспечивает в режиме защиты по п. 2.4 включение группы внешней нагрузки в работу при увеличении ее сопротивления до $(5,6\pm1,0)$ Ом.
- 2.6 Коммутатор имеет функции встроенного контроля при включении питания и во время работы. При увеличение внутренней температуры > 85 0 C производится защитное отключение всех групп внешней нагрузки.
- 2.7 Коммутатор обеспечивает обнаружение короткого замыкания (КЗ), обрыв, а также изменение сопротивления нагрузки в каждой группе внешней нагрузки с выдачей по интерфейсу RS-485 сигнала «Неисправность» с расшифровкой неисправностей.

Ток контроля, не более (1 ± 0.35) мА.

Ток короткого замыкания коммутатора 25,5 А.

- 2.8 Диапазон изменения сопротивления нагрузки при котором не выдается сигнал неисправности: Выкл; $\pm 5\%$; $\pm 10\%$; $\pm 15\%$; $\pm 20\%$; $\pm 25\%$; $\pm 30\%$; $\pm 35\%$ от настроенного пользователем номинального значения сопротивления нагрузки.
- 2.9 Время готовности с момента подачи питания с учетом времени на встроенный контроль, не более 5 с.
- 2.10 Скорость приема-передачи данных по интерфейсу RS-485 настраивается пользователем на следующие значения 1,2; 2,4; 4,8; 7,2; 9,6; 14,4; 19,2; 28,8; 38,4; 57,6; 76,8; 115,2; 153,6; 230,4; 307,2 кбод в зависимости от длины сегмента, типа кабеля, количества групп внешних нагрузок.
- 2.11 Коммутатор сохраняет работоспособность (без применения дополнительных репитеров) при следующих параметрах линий интерфейса:
 - 1) длина, не более......1200 м;
 - 2) емкость, не более......50 нФ;
 - 3) сопротивление, не более......50 Ом;
 - 4) сопротивление изоляции, не менее......50 кОм.
- 2.12 Тип линий связи интерфейса RS-485 экранированная витая пара. Допускается прокладывать линии связи интерфейса и питания в общем экране или кабеле.

Тип шлейфа - экранированный кабель.

- 2.13 Коммутатор обеспечивает работу от источника постоянного тока в диапазоне напряжений 18...28 В. Номинальное напряжение питания 24 В.
- 2.14 Номинальная мощность потребления коммутатора при номинальном значении напряжения питания, без учета мощности коммутируемых нагрузок не более 4 Вт.
- 2.15 Электрическая изоляция между соединенными электрическими цепями и корпусом коммутатора в нормальных климатических условиях выдерживает в течение 1 мин синусоидальное переменное напряжение 0,5 кВ частотой 45-65 Гц.
- 2.16 Электрическое сопротивление изоляции между соединенными электрическими цепями и корпусом коммутатора в нормальных климатических условиях не менее 20 МОм.

- 2.17 Коммутатор предназначен для работы при температуре окружающей среды от минус 40 до 70 °C группа исполнения С2 по ГОСТ Р 52931-2008 и относительной влажности воздуха до 95 % при температуре 35°C. Климатическое исполнение УХЛ 3.1 по ГОСТ 15150-69.
- 2.18 Коммутатор сохраняет работоспособность при воздействии синусоидальной вибрации в диапазоне частот от 10 до 150 Гц с амплитудой смещения 0,075 мм для частоты ниже частоты перехода (от 57 до 62 Гц) и амплитудой ускорения 1 g для частоты выше частоты перехода.
- 2.19 Коммутатор сохраняет работоспособность при воздействии прямого механического удара по корпусу с энергией 1,9 Дж, а также при воздействии одиночных ударных импульсов полусинусоидальной формы с максимальным ускорением 50 м/c^2 и длительностью удара 16 мc.
- 2.20 По степени защиты от пыли и воды, обеспечиваемой оболочкой, соответствуют группе IP65 по ГОСТ 14254-2015.
 - 2.21 Средняя наработка на отказ не менее 40000 ч.
 - 2.22 Режим работы непрерывный.
- 2.23 Коммутатор устойчив к радиочастотному электромагнитному полю (РЭП), параметры которого соответствуют 4-й степени жёсткости с критерием качества функционирования А по ГОСТ 30804.4.3-2013.
- 2.24 Коммутатор устойчив к наносекундным импульсным помехам (НИП), параметры которых соответствуют 3-й степени жёсткости с критерием качества функционирования А по ГОСТ 30804.4.4-2013.
- 2.25 Коммутатор устойчив к микросекундным импульсным помехам большой энергии, параметры которых соответствуют 3-й степени жёсткости с критерием качества функционирования А по ГОСТ Р 51317.4.5-99.
- 2.26 Коммутатор устойчив к кондуктивным помехам, наведенным радиочастотными электромагнитными полями, параметры которых соответствуют 3-й степени жёсткости с критерием качества функционирования А по ГОСТ Р 51317.4.6-99.
- 2.27 Коммутатор устойчив к кондуктивным помехам в полосе частот от 0 до 150 кГц, параметры которых соответствуют 3-й степени жёсткости с критерием качества функционирования А по ГОСТ Р 51317.4.16-2000.

- 2.28 Коммутатор устойчив к внешним магнитным полям, постоянным или переменным с частотой сети, параметры которых соответствуют 4-й степени жёсткости с критерием качества функционирования А по ГОСТ Р 50648-94.
- 2.29 Эмиссия индустриальных радиопомех от коммутатора в полосе частот 0.15-30 МГц во входные порты электропитания соответствуют ГОСТ 30805.22-2013;
- 2.30 Эмиссия индустриальных радиопомех от коммутатора в окружающее пространство в полосе частот 30 1000 МГц соответствует ГОСТ 30805.22-2013.
- 2.31 Качество функционирования коммутатора не гарантируется, если электромагнитная обстановка в условиях эксплуатации не соответствует требованиям указанным в п. 2.24 2.26.
 - 2.32 Масса, не более: 1,2 кг.
 - 2.33 Габаритные размеры, не более: $230 \times 230 \times 90$ мм.
 - 2.34 Назначенный срок службы коммутатора 10 лет.
 - 2.35 Назначенный срок хранения коммутатора 10 лет.
 - 2.36 Консервация коммутатора не предусмотрена.
- 2.37 Конструкция коммутатора не предусматривает замену отдельных элементов, кроме кабельных вводов при их повреждении.
- 2.38 Указания по регламентным срокам переосвидетельствования состояния не предъявляются.

3 КОМПЛЕКТНОСТЬ

Комплектность поставки коммутатора должна соответствовать таблице 2

Таблица 2

Наименование	Кол-во	Примечание
Преобразователь кода ПК-004 / КН.02	1	Исполнение по заявке потребителя
Паспорт С2.008.000-06.01 ПС	1	•
Руководство по эксплуатации C2.008.000-06.01 РЭ	1	На партию коммутаторов, направляемых в один адрес, но не более чем на 10
Резистор-терминатор	1	-
Заглушка	7	количество заглушек соответствует количеству кабельных вводов
Кронштейн	4	

4 УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

4.1 Коммутатор представляет собой плату с радиоэлементами и клеммами помещенную в алюминиевый корпус с кабельными вводами.

На плате расположен микроконтроллер, ключи коммутации и измерительные каскады контролируемых параметров.

Габаритный чертеж коммутатора приведен в Приложении А.

Сборочный чертеж коммутатора приведен в Приложении Б.

- 4.2 После включения по завершении встроенного контроля и отсутствии неисправностей коммутатор готов к работе.
- 4.3 При увеличении тока нагрузки в любой группе более 4,5 А коммутатор производит автоматическое защитное отключение этой группы.
- 4.4 Для каждой группы внешней нагрузки пользователем задается номинальное значение сопротивления нагрузки, диапазон изменения значения сопротивления нагрузки, при котором не выдается сигнал «НЕИСПРАВНОСТЬ». Диапазон задается в процентном значении от записанного номинального значения сопротивления нагрузки.

5 УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ

- 5.1 К эксплуатации, монтажу и техническому обслуживанию коммутатора допускаются лица, прошедшие инструктаж по технике безопасности, получившие допуск к работам в установленном порядке и изучившие настоящее руководство.
- 5.2 По способу защиты человека от поражения электрическим током коммутатор относятся к классу III по ГОСТ 12.2.007.0-75.
- 5.3 При монтаже, демонтаже и обслуживании коммутатора во время эксплуатации на объекте необходимо соблюдать меры предосторожности в соответствии с правилами техники безопасности, установленными для объекта. Ответственность за соблюдение правил безопасности возлагается на обслуживающий персонал.

Эксплуатация коммутатора должна осуществляться в соответствии с требованиями и рекомендациями, изложенными в настоящем руководстве.

- 5.4 Запрещается проводить демонтаж коммутатора, не отключив коммутатор от сети.
- 5.5 Ремонт коммутатора, допускается проводить только на предприятииизготовителе.
- 5.6 Кабели и кабельные вводы должны иметь рабочий температурный диапазон, соответствующий условиям эксплуатации коммутатора.

6 ПОДГОТОВКА К РАБОТЕ

- 6.1 При монтаже коммутатора следует соблюдать:
- 1) требования настоящего руководства;
- 2) требования эксплуатационной документации на изделия, в составе которых применяется коммутатор.
- 6.2 Перед установкой коммутатор должен быть осмотрен. Особое внимание необходимо обратить на:
 - отсутствие повреждений корпуса;
 - отсутствие повреждений клеммников;
 - наличие всех крепежных элементов;
 - наличие средств уплотнения и отсутствие их повреждений;
- 6.3. Коммутатор устанавливается в местах, обеспечивающих защиту от прямого воздействия осадков, солнечного излучения, кислотных, щелочных и других агрессивных примесей, токопроводящей пыли и механических повреждений внутри помещений, в шкафах и т.п.
 - 6.4 Монтаж коммутатора проводите в следующей последовательности:
 - определите место установки;
- разметьте места крепления в соответствии с Приложением А. Крепление корпуса может производиться как через штатные отверстия, так и с использованием кронштейнов входящих в комплект поставки.
 - к месту установки подведите проводники и кабели необходимой длины;
- при использовании ввода необходимо извлечь заглушку, входящую в комплект поставки.
 - заведите кабель и затяните кабельный ввод.
- подключите проводники к контактам клеммников и зажимам шины заземления в соответствии с рисунком 2, сборочным чертежом (см. Приложение Б) и электрической схемой подключения (см. Приложение В). Проводники должны подключаться без натяжения.

Клеммники коммутатора рассчитаны на подключение проводов сечением от $0,75\,$ мм 2 до $2,5\,$ мм 2 (одножильный или многожильный провод с наконечником фирмы Wago).

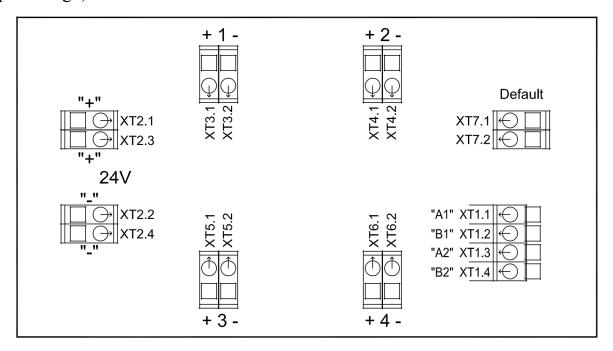


Рисунок 2

- если ПК-004 / PA-02A4вк установлен последним на интерфейсе RS-485, необходимо установить резистор-терминатор;
 - установите уплотнитель крышки, закройте и закрепите винтами.

Инструкция по сборке и монтажу кабельных вводов приведена в Приложении Д.

Запрещается подключать коммутатор к сети до полного завершения монтажа на месте эксплуатации.

6.5 Рекомендации по выбору БП

Ток короткого замыкания БП рассчитывается, исходя из числа подключенных к нему коммутаторов. Максимальный ток потребления одного коммутатора составляет 15A. Для ограничения тока БП используется формула :Iкз=Imax*n*1.5, где Imax-максимальный ток потребления коммутатора в рабочем режиме, n- количество коммутаторов, 1.5- запас БП по мощности.

7 ПОРЯДОК РАБОТЫ

- 7.1 После подключении коммутатора и подаче напряжения питания необходимо произвести его настройку в соответствии с Приложением Г:
 - настроить скорость передачи и адрес;
 - задать номинальные значения нагрузки для каждого канала;
 - задать диапазон разброса сопротивления для каждого канала.
- 7.2 При неизвестных текущих настройках коммутатора необходимо установить перемычку в разъем XT7.1-XT7.2, при этом коммутатор станет доступным по адресу 00 на скорости 2400 бод.

Если коммутатор установлен последним на интерфейсе RS-485, необходимо установить резистор-терминатор 120 Ом между линиями A и B интерфейса RS-485.

8 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

- 8.1 На крышке или корпусе коммутатора нанесена маркировка:
 - наименование или торговую марку предприятия-изготовителя;
 - условное обозначение изделия;
 - степень защиты оболочкой (код IP);
 - заводской номер;
 - рабочий диапазон температур;
 - климатическое исполнение;
 - дату изготовления;
 - "Сделано в России";
 - единый знак обращения продукции на рынке государств членов Таможенного союза;
 - напряжение питания;
 - ток потребления;
 - ток короткого замыкания;
 - QR-код.

9 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

9.1 Обеспечение безопасности коммутатора при эксплуатации.

Прием коммутатора в эксплуатацию после монтажа (установки) и выполнение мероприятий по технике безопасности должны производиться инженернотехническим персоналом в соответствии с настоящим руководством.

9.2 Для обеспечения надежной работы коммутатора необходимо проводить его техническое обслуживание.

Организацию и контроль за проведением работ по техническому обслуживанию коммутатора осуществляет инженерно-технический персонал, обслуживающий технические средства эксплуатирующей организации.

- 9.3 При проведении технического обслуживания коммутатора соблюдать меры безопасности, указанные в разделе 5.
- 9.4 Рекомендуется один раз в три месяца проводить следующий объем профилактических работ:
 - удаление загрязнений и пыли с корпуса влажной мягкой тканью.
- проверка надежности и качества ввода кабелей и подсоединения проводников к контактам клеммников проводится на отключенном коммутаторе проводники должны быть надежно закреплены, кабели не должны перемещаться во вводах.
- 9.5 При достижении предельного состояния коммутатор должен быть снят с эксплуатации.

К параметрам предельного состояния относится:

- истечение назначенного срока службы;
- истечение назначенного срока хранения;
- повреждение корпуса коммутатора или кабельных вводов;
- потеря работоспособности коммутатора.

10 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

- 10.1 В случае неисправности коммутатора в первую очередь отключите напряжение питания.
- 10.2. Краткий перечень возможных неисправностей и способы их устранения приведены в таблице 2.

Таблица 2

Наименование неисправности, внешние проявления и дополнительные признаки	Вероятная причина	Способ устранения
Нет обмена по последова- тельному интерфейсу	Нет контакта проводников с клеммами коммутатора, неисправность кабеля	Проверить качество подсоединения проводников к коммутатору, целостность кабеля
	Отсутствует нагрузка	Проверить качество подсоединения проводников к клеммам и целостность кабеля
Сигнал "обрыв" в канале	Записанное номинальное значение нагрузки отлично от подключенной	Записать текущее значение сопротивления как номинальное
Сигнал "замыкание" в канале	Неисправность кабеля, неисправность нагрузки, неправильное подключения нагрузки	Проверить кабель, правильность подключения и исправность нагрузки

- 10.3 При возникновении прочих более сложных неисправностей их устранение может проводиться только на предприятии-изготовителе.
- 10.4 При отказах коммутатора отсутствуют последствия которые могут причинить вред жизни или здоровью человека, имуществу, окружающей среде.

Критический отказ - потеря работоспособности коммутатора, повреждение корпуса коммутатора или кабельных вводов.

Возможные ошибки персонала (пользователя), приводящие к аварийным режимам работы коммутатора:

- несоблюдение временных сроков технического обслуживания и профилактических работ;
 - неправильное подключение коммутатора;
- не сохранение конфигурации после изменения каких-либо параметров, неправильная настройка скорости работы интерфейса и т.п.

К работе с коммутатором допускается персонал, прошедший соответствующую подготовку и аттестованный в установленном порядке, а также внимательно изучивший эксплуатационную документацию.

11 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 11.1 Коммутатор в транспортной таре допускается транспортировать любым видом транспорта в закрытых транспортных средствах железнодорожных вагонах, контейнерах, автомашинах, герметизированных отсеках самолетов при температуре окружающего воздуха от минус 50 до 50 °C.
 - 11.2 Способ укладки тары должен исключать ее перемещение.
- 11.3 Упаковка коммутатора производится на предприятии изготовителе в соответствии с ГОСТ 23170-78 и при транспортировании и погрузочноразгрузочных работах тара должна быть защищена от воздействия атмосферных осадков и не должна подвергаться резким ударам.
- 11.4 Условия хранения должны соответствовать требованиям группы 1(Л) по ГОСТ 15150-69 в закрытых отапливаемых помещениях при температуре окружающего воздуха от 5 до 40 °C.
- 11.5 При транспортировании и хранении в окружающем воздухе должны отсутствовать агрессивные примеси и токопроводящая пыль.

12 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 12.1 Предприятие-изготовитель гарантирует соответствие Коммутатора требованиям технических условий ТУ4233-002-12221545-01 в течение 18 месяцев с момента ввода в эксплуатацию при соблюдении потребителем правил эксплуатации, транспортирования, хранения и монтажа.
- 12.2 Гарантийный срок хранения 6 месяцев с момента отгрузки потребителю.
- 12.3 Коммутаторы, у которых во время гарантийного срока будет выявлено несоответствие требованиям технических условий ТУ4233-002-12221545-01, безвозмездно заменяются или ремонтируются предприятием-изготовителем.
 - 12.4 Адрес предприятия изготовителя:

OOO «СИНКРОСС», Россия, 410010, г. Саратов, ул. Жуковского, д. 9А, тел. (8452) 55-66-56, e-mail: office@sinkross.ru.

13 УТИЛИЗАЦИЯ

Коммутатор и входящие в его состав комплектующие элементы не содержат токсичных или радиоактивных материалов, представляющих опасность для жизни, здоровья людей и окружающей среды после окончания срока службы, и не требуют специальных мер по их утилизации. Утилизация производится без принятия специальных мер защиты окружающей среды.

Порядок утилизации коммутатора определяется потребителем.

14 СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

Рекламации потребителя предъявляются и удовлетворяются в следующем порядке:

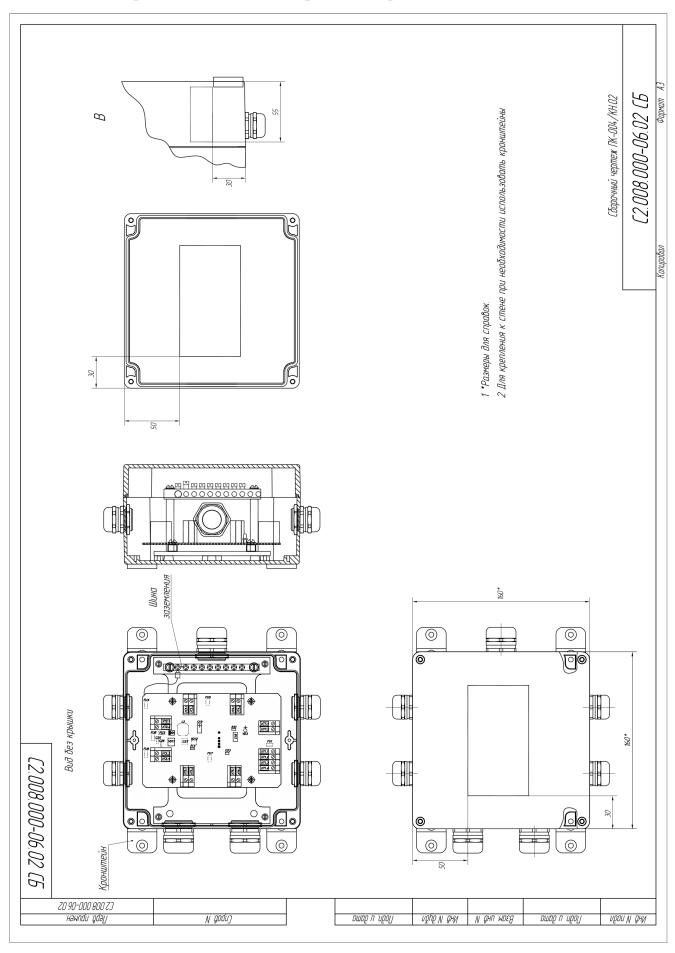
При получении коммутатора от транспортной организации получателю следует визуальным осмотром проверить целостность транспортной упаковки и комплектности.

В случае обнаружения повреждений транспортной тары или комплектности, составляется соответствующий акт в присутствии грузополучателя.

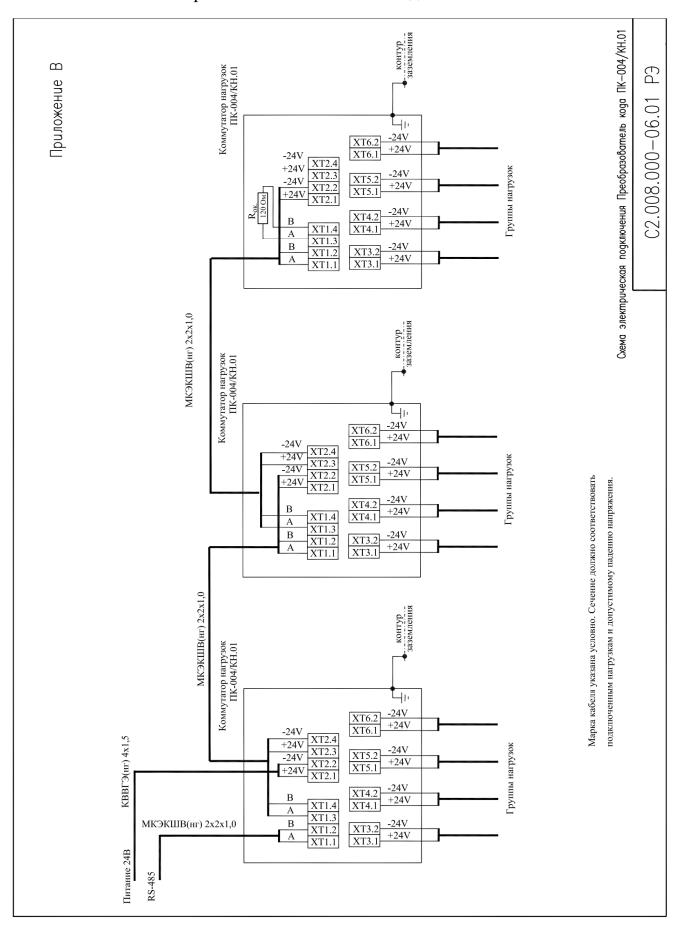
Коммутатор, у которого в течение гарантийного срока, при условии соблюдения правил хранения, транспортирования, монтажа и эксплуатации, будут выявлены отказы в работе или неисправности, безвозмездно ремонтируется или заменяется на исправный предприятием-изготовителем.


При отказе коммутатора в период гарантийного срока потребителем должен быть составлен технический акт, в котором указывается:

- заводской номер;
- дата начала эксплуатации;
- условия эксплуатации;
- количество часов работы до момента отказа;
- дата возникновения отказа;
- характер отказа;
- предполагаемая причина возникновения отказа;


- меры, принятые после возникновения отказа.

Акт высылается предприятию-изготовителю для устранения выявленных дефектов.


Приложение А Габаритный чертеж ПК-004 / КН.02

Приложение Б Сборочный чертеж ПК-004 / КН.02

Приложение В Схема подключения

Приложение Г

Описание настройки коммутатора ПК-004/КН.

Все настройки коммутатора производятся по интерфейсу RS-485 через меню настройки АПКП «СТРАЖ», K-2000, K-3101 в режиме терминала или с помощью IBM PC при использовании программы «TestComm2».

При неизвестных текущих настройках коммутатора необходимо установить перемычку в разъем XT7.1-XT7.2, при этом коммутатор станет доступным по адресу 00 на скорости 2400 бод.

Строка пункта меню имеет общий формат вида:

XX[NN] Название пункта: текущее значение

где: ХХ – текущий номер пункта меню;

NN – количество пунктов меню;

название пункта — название отражаемой величины, либо величины которую можно изменить в данном пункте меню;

текущее значение — это значение величины которое можно изменять, нажатием кнопки «Запись», либо это значение является информационным.

Меню коммутатора, доступное через терминал, имеет следующий вид:

- 1[25] Slave-адрес: XXh
- 2[25] Скорость обмена: XXX.XkBd
- 3[25] Применить конфигурацию
- 4[25] Восстановить конфигурацию
- 5[25] Заводская конфигурация
- 6[25] Сброс конфигурации
- 7[25] Температура: XX.X°C
- 8[25] Напр. питания: ХХ.ХВ
- 9[25] Сопрот.нагр.1: ХХХХ.Х Ом
- 10[25] Норм.сопрот.1: ХХХХ.Х Ом
- 11[25] YCT.1 XX% XXXX.X/XXXX.X
- 12[25] Сопрот. нагр. 2: ХХХХ. Х Ом
- 13[25] Норм.сопрот.2: ХХХХ.Х Ом
- 14[25] YCT.2 XX% XXXX.X/XXXX.X
- 15[25] Сопрот. нагр. 3: ХХХХ. Х Ом
- 16[25] Норм.сопрот.3: XXXX.X Ом
- 17[25] YCT.3 XX% XXXX.X/XXXX.X
- 18[25] Сопрот. нагр. 4: ХХХХ. Х Ом
- 19[25] Норм. сопрот. 4: ХХХХ. Х Ом
- 20[25] YCT.4 XX% XXXX.X/XXXX.X

```
21[25] Ток нагрузки 1: XXXX мА
22[25] Ток нагрузки 2: XXXX мА
23[25] Ток нагрузки 3: XXXX мА
24[25] Ток нагрузки 4: XXXX мА
25[25] Сист.статус: XXXXh XXXXh
```

1[25] Slave-адрес: XXh

где XX – текущее значение сетевого адреса MODBUS в шестнадцатеричном виде.

Ввод нового значения производится набором значения в диапазоне 00..FF и нажатием кнопки «Запись». При вводе неверного значения текущее значение не меняется.

2[25] Скорость обмена: XXX.XkBd

где XXX.X — текущая скорость работы интерфейса, которая может принимать значения из ряда: выкл., 1200, 2400, 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 153600, 230400, 307200. Ввод нового значения производится последовательным перебором значений нажатием на кнопку «Запись».

3[25] Применить конфигурацию

Сохранения настроек в энергонезависимой памяти. Для записи новой конфигурации необходимо нажать кнопку «Запись».

ВНИМАНИЕ! Все настройки коммутатора – сетевой адрес, скорость работы интерфейса, нормальные значения сопротивлений каналов, уставки по каналам вступают в силу только после сохранения конфигурации в энергонезависимой памяти.

4[25] Восстановить конфигурацию

5[25] Заводская конфигурация

6[25] Сброс конфигурации

7[25] Температура: XX.X°C

Внутренняя температура коммутатора.

8[25] Напр. питания: XX.XB

Величина питающего напряжения.

9[25] Сопрот.нагр.1: ХХХХ.Х Ом

Сопротивление нагрузки включенной в первый канал коммутатора. Если значение сопротивления больше 3000 Ом, то вместо значения пишется «Обрыв». Если значение сопротивления $(5,6\pm1,0)$ Ом, то пишется «Замыкание». При включении текущего канала вместо значения пишется «Включен».

10[25] Норм.сопрот.1: XXXX.X Ом

В данном пункте меню выводится записанное сопротивление нагрузки которое будет считаться как нормальное. При нажатии кнопки «Запись» на данном пункте меню происходит запись текущего сопротивления нагрузки в качестве нормального сопротивления.

11[25] Yet.1 XX% XXXX.X/XXXX.X

В данном пункте меню задается уставка разброса текущего сопротивления нагрузки в процентах от записанного нормального значения сопротивления, при котором не происходит вывода неисправности линии/нагрузки. Проценты разброса выбираются перебором из ряда: Нет, 5%, 10%, 15%, 20%, 25%, 30%, 35%. Если уставка выключена, т.е. выбрано значение «Нет», то диапазоном разброса сопротивления будет: $(5,6\pm1,0)-3000$ Ом. При выборе процентов в данном пункте меню выводится граничные значения сопротивлений соответствующие данному процентному разбросу.

<u>12[25] Сопрот.нагр.2: XXXX.X Ом</u> Аналогично каналу №1.

<u>13[25] Норм.сопрот.2: XXXX.X Ом</u> Аналогично каналу №1.

<u>14[25] Уст.2 XX% XXXX.X/XXXX.X</u> Аналогично каналу №1.

<u>15[25] Сопрот.нагр.3: XXXX.X Ом</u> Аналогично каналу №1.

<u>16[25] Норм.сопрот.3: XXXX.X Ом</u> Аналогично каналу №1.

<u>17[25] Уст.3 XX% XXXX.X/XXXX.X</u> Аналогично каналу №1.

<u>18[25] Сопрот.нагр.4: XXXX.X Ом</u> Аналогично каналу №1.

19[25] Норм.сопрот.4: ХХХХ.Х Ом Аналогично каналу №1.

20[25] Уст.4 XX% XXXX.X/XXXX.X Аналогично каналу №1.

21[25] Ток нагрузки 1: ХХХХ мА

При включенном 1 канале в данном пункте меню отображается ток потребления. При увеличении тока до 4,5 А срабатывает защита, т.е. происходит

отключение выхода и устанавливается бит блокировки канала в регистре ошибок. Блокировка канала снимается при увеличении сопротивления нагрузки до значения $(5,6\pm1,0)$ Ом или более.

22[25] Ток нагрузки 2: ХХХХ мА

Аналогично каналу №1.

23[25] Ток нагрузки 3: ХХХХ мА

Аналогично каналу №1.

24[25] Ток нагрузки 4: ХХХХ мА

Аналогично каналу №1.

25[25] Cuct.ctatyc: XXXXh YYYYh

где ХХХХ – системные флаги; ҮҮҮҮ – флаги ошибок.

- X[0] GlobalDefault
- Y[0] EepromError ошибка EEPROM;
- Y[1] FactoryConfigError отсутствует заводская конфигуращия;
- Y[2] ConfigChanged конфигурация изменена;
- Y[3] SerialNumberError отсутствует или испорчен серийный номер;
- Y[8] Channel1Error сопротивление 1-го канала вышло за рамки уставки;
- Y[9] Channel2Error сопротивление 2-го канала вышло за рамки уставки;
- Y[10] Channel3Error сопротивление 3-го канала вышло за рамки уставки;
- Y[11] Channel4Error сопротивление 4-го канала вышло за рамки уставки;
- Y[12] Channel1Disable канал №1 заблокирован по превышению тока;
- Y[13] Channel2Disable канал №2 заблокирован по превышению тока;
- Y[14] Channel3Disable канал №3 заблокирован по превышению тока;
- Y[15] Channel4Disable канал №4 заблокирован по превышению тока.

Приложение Д. Описание регистров ПК-004 / КН.02.

Регистры ПК-004/КН.

		51 11K-004/KH.	
Рег	Биты	Описание	
00	0	GlobalDefault	
01	0	Ошибка EEPROM	1.470
	1	Ошибка зав. конфигурации	1 17 1000
	2	Конфигурация изменена	
	3	Ошибка серийного номера	
02	0	Канал 1 Включен	
	1	Канал 1 Заблокирован	Заблок. при R $< 2\Omega$ или I $> 4,5$ A, разблок. при R $> 5,6\Omega$
	2	Канал 1 Замыкание	$R < 2\Omega$
	3	Канал 1 Обрыв	$R > 3500,0\Omega$
	4	Канал 1 Нижняя уставка	
	5	Канал 1 Верхняя уставка	
	6	Канал 1 Уставки включены	
	7		
	8	Канал 2 Включен	
	9	Канал 2 Заблокирован	Заблок. при R $< 2\Omega$ или I $> 4,5$ A, разблок. при R $> 5,6\Omega$
	Α	Канал 2 Замыкание	$R < 2\Omega$
	В	Канал 2 Обрыв	$R > 3500,0\Omega$
	С	Канал 2 Нижняя уставка	
	D	Канал 2 Верхняя уставка	
	Е	Канал 2 Уставки включены	
	F		
03	0	Канал 3 Включен	
	1	Канал 3 Заблокирован	Заблок. при $R < 2\Omega$ или $I > 4,5A$, разблок. при $R > 5,6\Omega$
	2	Канал 3 Замыкание	$R < 2\Omega$
	3	Канал 3 Обрыв	$R > 3500,0\Omega$
	4	Канал 3 Нижняя уставка	
	5	Канал 3 Верхняя уставка	
	6	Канал 3 Уставки включены	
	7		
	8	Канал 4 Включен	
	9	Канал 4 Заблокирован	Заблок. при R $< 2\Omega$ или I $> 4,5$ A, разблок. при R $> 5,6\Omega$
	Α	Канал 4 Замыкание	$R \le 2\Omega$
	В	Канал 4 Обрыв	$R > 3500,0\Omega$
	С	Канал 4 Нижняя уставка	
	D	Канал 4 Верхняя уставка	
	Е	Канал 4 Уставки включены	
	F		
04		Внутренняя температура	H L; $0000h = 0.0^{\circ}C$; $0099h = 15,3^{\circ}C$; $0FFFFh = -0,1^{\circ}C$.
05		Напряжение питания +24В	H L; 0000h = 0.0B; 00F5h = 24,5B.
06		Сопротивление Канала 1	H L; $0000h = 0Ω$; $451Ah = 1769,0Ω$.
07		Сопротивление Канала 2	HL
08		Сопротивление Канала 3	HL
09		Сопротивление Канала 4	HL
0A		Ток Канала 1	H L; 0000h = 0mA; 05DCh = 1500mA.
0B		Ток Канала 2	HL
0C		Ток Канала 3	HL
0D		Ток Канала 4	HL
20	0	Включить Канал 1	Бит включения канала
	1	Включить Канал 2	Бит включения канала
	2	Рключить Канал 3	Бит включения канала
	3	Вкиючить Канал 4	Бит включения канала

По функциям 03h, 04h доступны регистры 00h – 0Dh и 020h.

По функции 10h доступен регистр 020h.

6Еh – ответ 4 байта – аналогично регистрам 02h и 03h

7**Ch** – Данные один байт. Включение каналов. 0 бит – 1й канал, 1 бит – 2й канал, 2 бит – 3й канал, 3 бит – 4й канал. Аналогично регистру 020h.

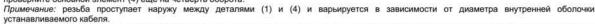
6Bh = 7Ch + 6Eh

РЕШЕНИЯ ДЛЯ ВСЕХ ТИПОВ КАБЕЛЯ

ИНСТРУКЦИЯ ПО СБОРКЕ И МОНТАЖУ КАБЕЛЬНОГО САЛЬНИКА E1FW

СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ ДЕКЛАРАЦИИ ЕС

Кабельный сальник CMP E1FW двойной сертификации - взрывонепроницаемая оболочка ("d") и повышенная защита против взрыва ("e") - применяется для монтажа кабелей, бронированных стальной проволокой. Обеспечивает взрывобезопасное уплотнение по внутренней оболочке кабеля и дополнительную защиту от воздействия окружающей среды по внешней оболочке кабеля. E1FW обеспечивает электрическую целостность цепи заземления через концевую заделку проволочной брони. Кабельный ввод E1FW предназначен для применения во взрывоопасных Зонах 1 и 2, а также в Зонах 21 и 22.


- 1. Вводной элемент
- 2. Уплотнитель внутренней оболочки
- 4. Основной элемент 5. Корпус сальника 6. Нажимная гайка
- 7. Уплотнитель внешней оболочки
- 8. Цветное кольцо

- 3. Шайба скольжения

ВНИМАТЕЛЬНО ОЗНАКОМЬТЕСЬ С ИНСТРУКЦИЕЙ ПЕРЕД НАЧАЛОМ МОНТАЖА

- Разберите кабельный сальник, отвинтив основной элемент (4) от корпуса сальника (5), разделяя его на два блока: (A), состоящей из деталей 1, 2, 3, 4 и (B), состоящей из деталей 5, 6, 7, 8.

 Определите необходимую длину проводников, согласно размерам оборудования, и разделайте кабель соот-
- ветствующим образом, удалив часть внешней оболочки, чтобы были видны изолированные проводники. Убедитесь, что уплотнитель внешней оболочки (7) находится в ослабленном состоянии. Пропустите кабель через блок (В). Сдвиньте назад внешнюю оболочку и броню кабеля в целях соблюдения геометрии оборудо-
- Дополнительно обнажите броню, удалив внешнюю оболочку кабеля на расстояние, равное длине сужающегося конуса основного элемента (4), плюс 6 мм. Убедитесь, что уплотнитель внутренней оболочки (2) в блоке (A) находится в ослабленном состоянии.
- Пропустите кабель через блок (А), равномерно размещая оплетку (броню) вокруг сужающегося конуса основного элемента (4). Прижимая кабель по направлению вперед в целях обеспечения контакта брони с конусом основного элемента, плотно ввентите деталь (4) в вводной элемент (1) путем вращения основного элемента вручную до тех пор, пока не почувствуете сильное сопротивление. После этого проверните основной элемент (4) еще на один оборот с помощью ключа. Убедитесь, что уплотнитель внутренней оболочки эффективно облегает кабель, т. е. кабель не должен перемещаться по оси. Если необходимо, проверните основной элемент (4) еще на четверть оборота.

- Заблокируйте броню на сужающемся конусе элемента (4). Накрутите корпус сальника (5) на основной элемент (4), удерживая его ключом (во избежание передачи дополнительного напряжения на детали (2) и (3)). Накручивать корпус сальника (5) на элемент (4) необходимо до тех пор, пока между торцом корпуса и шестигранником основного элемента не останется зазор 0,5 1,0 мм (при использовании проволоки брони наименьшего диаметра). Эти детали не должны располагаться вплотную. По просьбе заказчика может быть поставлен шаблон. Примечание: устройство фиксации брони, которое не зависит от функции уплотнения и проверочного зазора, будучи конструктивной особенно-
- стью кабельных вводов CMP-Products, устраняет необходимость разборки кабельного сальника и проверки установки кольца Накрутите нажимную гайку (6) на корпус сальника (5) вручную до тех пор, пока не почувствуете сильное сопротивление. Если необходимо, нажимную гайку можно подкрутить ключом.

Примечание: Для защиты резьбы кабельного ввода в месте стыка с корпусом основного оборудования от пыли и грязи рекомендуется использовать уплотнительное кольцо CMP – ETS2 соответствующего размера.

На этом монтаж кабельного сальника завершен.

Таблица выбора кабельного сальника

таолица в	аолица выоора каоельного сальника											
Размер ввода		гандартная резьба "С"		Линимальна Диаметр Диаметр кабе џлина резьбі кабеля "А" ля "В"			Максимальная Максимальный толщина брони диаметр "Е"		Тип кабельного	Тип защитного		
ввода	Metric	NPT	PG	"D"	min	max	min	max	толщина орони	диаметр с	ввода	кожуха PVC
20/16	M20	1/2"	11	15	3.1	8.6	6.0	13.4	0.9	24.4	20/16E1FW	PVC02
20S	M20	1/2"	13.5	15	6.1	11.6	9.5	15.9	0.9/1.25	26.6	20SE1FW	PVC04
20	M20	1/2"	16	15	6.5	13.9	12.5	20.9	0.9/1.25	33.3	20E1FW	PVC06
25	M25	3/4"	21	15	11.1	19.9	17.0	26.2	1.25/1.6	40.5	25E1FW	PVC09
	все размеры указаны в миллиметрах											

Возможно изготовление кабельного ввода с резьбой "C" - NPT, PG и др.

CMP-Products

Glasshouse Street - St.Peters - Newcastle upon Tyne - NE6 1BS Tel: +44 191 265 7411 Fax: +44 191 265 0581

E-mail: cmp@cmp-products.co.uk Web: www.cmp-products.co.uk Представитель в России - ООО АТЭКС-Электро

Тел, Факс: (812) 380-55-88, (812)374-74-47

E-mail: info@atekselectro.ru Web: www.cmp-products.ru

1 D

(3

4

E

(B)

www.cmp-products.ru

Кабельный ввод латунь - SZ 2411.831

created: 08.07.2021 build on www.rittal.com/ru-ru

Описание продукта

Преимущества: Корпус и контр-гайка поставляются вместе, что снижает затраты на складирование.

Зажимные сегменты для равномерного зажатия и снятия нагрузки.

Материал: Латунь

Уплотнение: TPE/NBR

Поверхность: Никелированная

Степень защиты ІР согл. МЭК 60 529:

IP 68 (5 бар, 30 мин)

Описание продукта

Размеры: Высота: 30,5 mm

Резьба: Тип: M25 x 1,5

Длина резьбы: 8 mm

Мин. диаметр кабеля: 11 mm

Макс. диаметр кабеля мм: 17 mm

Рабочая температура: Диапазон температур (окружающая среда): -40 °C...+100 °C

Размер под ключ: 27 mm

Упаковка: 10 шт.

© Rittal 2021

Сертификаты Сертификаты:	UL + C-UL
Описание продукта:	SZ кабельный ввод латунь, размер: M25x1,5, для кабеля ø 11-17 мм
eCI@ss 6.0/6.1:	27149109
eCI@ss 8.0/8.1:	27149109
ETIM 6.0:	EC000441
ETIM 7.0:	EC000441
EAN:	4028177810068
Доля меди (кг / штук):	0
Bec:	0,64 kg

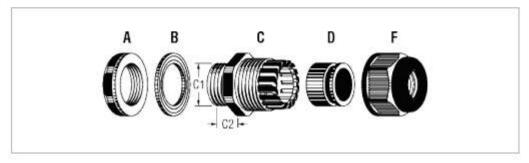
© Rittal 2021 2

Кабельный ввод латунь — SZ 2411.821 created: 08.07.2021 build on www.rittal.com/ru-ru

Описание продукта	
Преимущества:	Корпус и контр-гайка поставляются вместе, что снижает затраты на складирование Зажимные сегменты для равномерного зажатия и снятия нагрузки.
Материал:	Латунь Уплотнение: TPE/NBR
Поверхность:	Никелированная
Степень защиты IP согл. МЭК 60 529:	IP 68 (5 бар, 30 мин)
Описание продукта	
Размеры:	Высота: 26 mm
Резьба:	Тип: M20 x 1,5
Длина резьбы:	8 mm
Мин. диаметр кабеля:	6 mm
Макс. диаметр кабеля мм:	12 mm
Рабочая температура:	Диапазон температур (окружающая среда): -40 °С+100 °С
Размер под ключ:	22 mm
Упаковка:	10 шт.

© Rittal 2021

Bec:	0,38 kg
	0
Доля меди (кг / штук):	0
EAN:	4028177810075
ETIM 7.0:	EC000441
ETIM 6.0:	EC000441
eCI@ss 8.0/8.1:	27149109
eCl@ss 6.0/6.1:	27149109
Описание продукта:	SZ кабельный ввод латунь, размер: M20x1,5, для кабеля ø 6-12 мм
Сертификаты	
Сертификаты:	UL + C-UL VDE
Сертификаты:	NA NA
Пояснения:	Декларация о соответствии


© Rittal 2021 2

Серия PGB

Техническая информация

Тип резьбы	электроарматурная
Материал частей	А, С, F — безгалогенный нейлон РАбб (UL94V-2); В, D — вакуумная резина
Температура	от - 40 до +105° C (кратковременно +160° C)
Цвет	В – черный (RAL9005), G – серый (RAL7035)
Степень защиты	IP68

Чертеж

Код заказа и артикул

Код заказа	Артикул	Резьба	Диам. кабеля	C1	C2	Шестигр. A/F	Упаковка
13397	PGB7-05B	PG 7	5,5-3	12,5	8,5	17/15	50
13398	PGB7-05G	PG 7	5,5-3	12,5	8,5	17/15	50
13399	PGB7-07B	PG 7	7-4	12,5	8,5	17/15	50
13400	PGB7-07G	PG 7	7-4	12,5	8,5	17/15	50
10072	PGB75-03B	PG 7	3,1-1,5	12,5	8	17/13	50
10073	PG875-03G	PG 7	3,1-1,5	12,5	8	17/13	50
10074	PGB7S-06B	PG 7	6-3	12,5	8	17/13	50
10075	PGB7S-06G	PG 7	6-3	12,5	8	17/13	50
+	PG89-05B	PG 9	5,5-3	15,2	8,5	22/19	50
7	PGB9-05G	PG 9	5,5-3	15,2	8,5	22/19	50
13401	PG89-098	PG 9	8-4,5	15,2	8,5	22/19	50
13402	PGB9-09G	PG 9	8-4,5	15,2	8,5	22/19	50
13403	PGB11-07B	PG 11	7-4	18,6	9	24/22	50

13404	PGB11-07G	PG 11	7-4	18,6	9	24/22	50
13405	PGB11-10B	PG 11	10-6				50
		120000		18,6	9	24/22	
13406	PGB11-10G	PG 11	10-6	18,6	9	24/22	50
13407	PGB13.5-08B	PG 13,5	8,8-5	20,4	10	27/24	50
13408	PGB13.5-08G	PG 13,5	8,8-5	20,4	10	27/24	50
13409	PGB13.5-12B	PG 13,5	12,5-7	20,4	10	27/24	50
13410	PGB13.5-12G	PG 13,5	12,5-7	20,4	10	27/24	50
13411	PGB16-10B	PG 16	11-6	22,5	10	30/27	50
13412	PGB16-10G	PG 16	11-6	22,5	10	30/27	50
13413	PGB16-14B	PG 16	14-8,5	22,5	10	30/27	50
13414	PGB16-14G	PG 16	14-8,5	22,5	10	30/27	50
13415	PG821-16B	PG 21	16-10	28,3	12	36/33	50
13416	PGB21-16G	PG 21	16-10	28,3	12	36/33	50
13417	PGB21-18B	PG 21	18-12,5	28,3	12	36/33	50
13418	PG821-18G	PG 21	18-12,5	28,3	12	36/33	50
13419	PGB29-22B	PG 29	22-16	37	15	46/41	10
13420	PGB29-22G	PG 29	22-16	37	15	46/41	10
13421	PGB29-25B	PG 29	25–18	37	15	46/41	10
13422	PGB29-25G	PG 29	25-18	37	15	46/41	10
-	PGB36-25B	PG 36	25-20	47	15	57/50	10
-	PGB36-25G	PG 36	25-20	47	15	57/50	10
13423	PGB36-30B	PG 36	32-24	47	15	57/50	10
13424	PGB36-30G	PG 36	32-24	47	15	57/50	10
-	PGB42-32B	PG 42	32-26	54	15,5	64/62	10
-	PGB42-32G	PG 42	32-26	54	15,5	64/62	10
13425	PGB42-39B	PG 42	41-31	54	15,5	64/62	10
13426	PGB42-39G	PG 42	41-31	54	15,5	64/62	10
-	PGB48-38B	PG 48	38-30	59,3	15,5	70/65	10
-	PGB48-38G	PG 48	38-30	59,3	15,5	70/65	10
13427	PGB48-45B	PG 48	45-35	59,3	15,5	70/65	10
13428	PGB48-45G	PG 48	45-35	59,3	15,5	70/65	10

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

	Номера листов (страниц)				D -		Входящий №		<u> </u>
Изм.	изменен- ных	заменен- ных		аннулиро-ванных	Всего листов (страниц) в докум.	№ докум.	сопроводи- тельного доку- мента и дата	Подп.	Дата